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Abstract—The development of Internet of Things (IoT) in the
last years provide a tremendous playground for attackers. Large
attack campaigns against or using IoT devices highlight the
underlying risk they convey. In this paper, we are particularly
interested by IoT services that are provided through cloud-based
applications.

Although such services that are accessed by Internet leverages
de facto relevant practices for security, like encryption, we
propose a technique to demonstrate that private information
about the user behavior still leak out. In a nutshell, we aim
at decomposing a single user command into atomic actions.

I. INTRODUCTION

With the emergence of the Internet of Things (IoT), the use
of heterogeneous IoT devices becomes widespread. However,
many of them suffer from security issues including the lack
of updates or the use of default credentials. As a result, IoT
devices are now targets for attackers, and compromised IoT
devices can led to the creation of major botnets like Mirai
[1] or BrickerBot [2]. In addition to these security concerns,
IoT devices in smart homes also present a risk of user privacy
leakage [3, 4, 5, 6].

Analyzing the IoT traffic is of paramount importance to
evaluate the level of private data a malicious user can infer or
to profile malicious actions such as attacks that are now mixed
within the IoT traffic. We thus propose a traffic analysis tech-
nique dedicated to IoT gateways1, more precisely by observing
the Internet traffic of the IoT gateway, which interacts with a
cloud-based web service. Such a case neither assumes to be
able to observe IoT device communications themselves, and
so to be in their close vicinity, nor supposes to eavesdrop the
end-user commands.

Fig. 1 shows an example of the IoT system our work focuses
on. The user connects to a mobile application, (1) requests a

1This paper summarizes our original paper [7]
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Fig. 1: Attacker model considered in this paper

command c containing the actions a1 and a2 to be executed
on two IoT devices, (2) the web service sends c to the IoT
gateway over an encrypted communication channel and (3)
the latter transmits a1 and a2 to the intended IoT devices
using a wireless protocol (that can be proprietary and/or IoT
specific and/or encrypted). Our proposed technique aims at
decomposing the encrypted application data, observed during
step (2), to deduce information about the IoT devices accessed
and related requests during step (3).

The paper is structured as follows. Section II introduces the
related work on IoT fingerprinting and network traffic analysis.
Section III defines the targeted problem. Section IV describes
our proposed technique and Section V concludes our paper.

II. RELATED WORK

For security purposes, fingerprinting solutions [8, 9] to
identify IoT devices in a network using header values (e.g.,
IP addresses, port numbers, protocol) [8] or period-related
features (e.g., period duration, number of periodic flows) [9]
were proposed.

IoT devices may also lead to user privacy leakage [3, 4,
6]. In [3], the network traffic generated by a Bluetooth Low
Energy (BLE) fitness tracker is analysed and used to identify
a person and its current activity. Similar inferences have also
been noticed in [4] using the network traffic rate from WiFi
devices. In [6], a multi-stage privacy attack able to identify the
actions and the states of the IoT devices present in an end-user
local network was introduced.

Our work mainly differs by considering exclusively external
traffic between the IoT gateway and a web service. However,
such traffic is often encrypted which limits the exposure of
the IoT devices and their related activities.

From that perspective, a method to identify the web-
application related to a SSL traffic was presented in [10] and
a fine-grained profiling of user activities of an HTTPS service
is possible by reconstructing the sizes of loaded objects [11].

The described techniques used the packet sizes and showed
that the use of cryptographic protocols does not guarantee user
privacy. In our work, we used the encrypted payload sizes with
the aim to decompose it.

III. PROBLEM DEFINITION

Considering a vantage point within the end-user IoT net-
work, inferring user activities [6] may be relatively straight-
forward because the network traffic of each individual IoT



device is observable but forces the attacker to be in a close
vicinity which also limits the practicability of the attack.

The presence of IoT gateways in the end-user local net-
work makes the user privacy assessment harder because the
gateways receive, from a web service, commands that may
concern multiple heterogeneous IoT devices at the same time
(see Fig. 1). Thus, once attached to an IoT gateway, these
IoT devices are not directly visible or accessible through the
Internet.

However, by communicating with a web service through
the Internet, the network traffic of the IoT gateway, often
encrypted using secure protocols, can be observed. In this
work, we evaluate the level of private user information (mainly
user actions requested) exposed by an IoT gateway on the
Internet.

A. Challenges and assumptions

Considering our point of observation, our approach raises
some challenges:

• C1 - No individual IoT device signature. IoT devices
may be requested by the users to perform multiple actions
and the number of IoT devices might be large. Indeed,
assuming the user has only 5 IoT devices with 7 possible
actions then, it leads to 19607 combinations. As a con-
sequence, it is not possible to learn every combination.

• C2 - Gateway abstraction. The IoT gateway receives
and processes generic actions. Indeed, even though IoT
devices might be completely different (e.g., protocols,
brands, models), the IoT gateway receives actions from
a single control channel by the web service.

• C3 - Encryption. IoT gateway network traffic is en-
crypted (often using SSL/TLS), so extracting original
content from application data is impossible.

Based on preliminary studies and related work described in
section II, we make the following assumptions:

• A1 - Sending actions to the IoT devices. When the user
performs multiple actions on multiple IoT devices in one
command, we assume that these actions are merged into
one actions list c.

• A2 - Incidence of the actions on the packet size. The
larger the list c sent from the user to the web service, the
larger the corresponding application data sent from the
web service to the IoT gateway. So, the actions performed
have an incidence on the application data observed and
the cryptographic protocol used does not include padding.

• A3 - Command size stability. When the same action
is performed multiple times, its payload size does not
change significantly.

• A4 - Data structures similarity. In Fig. 1, we assume
some similarities, in their format, between the data sent
by the web service to the IoT gateway during step (2)
and the original data sent by the user during step (1).

IV. INDIRECT KNOWLEDGE EXTRACTION

Identifying IoT gateway in a network is not the focus of
this paper but the reader can refer to techniques from related

works [8, 9]. Here, we consider the IP address of the IoT
gateway as known.

Our approach follows three main steps to learn the signa-
tures of individual actions:

• From known user actions, extract relevant features from
the corresponding network packets sent by the web ser-
vice to the IoT gateway.

• Signature construction using the features previously ex-
tracted.

• Learning of possible variations between our signatures
and the observed encrypted application data sizes.

Once learning achieved, user actions can be identified (testing).
Each of these steps is described in details in next subsec-

tions.

A. Features extraction

With respect to our assumptions and challenges, the main
feature used is the encrypted application data size.

To derived the size of each possible action a1, ..., an, we
performed the following steps: (1) perform the action ai on
one IoT device with the user application, (2) extract the data di
sent to the web service, (3) find the corresponding packets si
sent by the cloud-based web service to the IoT gateway and (4)
repeat the operation by sending ai on two IoT devices to get
another data structure d2i with its corresponding packet s2i.
The rationale behind this process is the existence of additional
content (such as timestamps), ac, in the message that is not
dependent on the actions or their number.

Assuming |si| (resp. |s2i|), the encrypted application data
size of si (resp. s2i). Then, the size of action ai (|ai|) can be
computed by subtracting |si| to |s2i|. Similarly, the size of ac
is computed using |ai| and |si|.

Our final set of features is composed of |ac| and |ai|1≤i≤n.

B. Learning of the signatures

Once all |ai| are computed, any size |s| from encrypted
application data sent by the web service to an IoT gateway
can be rewritten as in equation (1), with |ac| the additional
content size, |ai| the size of the action ai, nb ai ∈ N the
number of occurrences of ai in s and ε ∈ Z, a variation value.

|s| = |ac|+ ε+

n∑
i=1

|ai| × nb ai (1)

C. Learning the variations between the theoretical and ob-
served sizes

We introduced ε in (1) because we consider that the en-
crypted application data size observed may not be exactly
equal to the one we can compute using previously inferred
|ac| and |ai|1≤i≤n. The ε embeds so both variations of the
actions or the additional content.

Hence, ε is simply the expected difference between these
two sizes (observed and computed by composing |ac| and
|ai|1≤i≤n ).

To automatically learn this value, different combinations
of actions Aj = {nb a1, ..., nb an} with j = 1...m were



performed and their corresponding encrypted payload size
|sj | retrieved. Then, using (1), each εj can be derived and
a learning dataset containing m tuples < |sj |, εj > is built.
Finally, for each new observed encrypted size |sj | (when we
do not control the actions), we search for the closest size in
this dataset to deduce the related εj , i.e., k-Nearest Neighbors
classifier (kNN) in one dimension.

D. User action identification

Assuming now the user performs a new command A with
A = {nb a1, ..., nb an}. The objective is so to automatically
infer the value of each nb ai with i = 1...n, knowing only
the global encrypted payload size |sc| received by the IoT
gateway.

Firstly, using the classifier previously trained (kNN), εc is
assigned from |sc|. Then, we subtract |ac| and εc from |s|. Our
problem is now similar to the change-making problem [12]
and its dynamic programming algorithm can be used to find
the commands Aj = {nb aj1, ..., nb ajn} with j = 1...m
satisfying equation (1). However, each command Aj is a
candidate result, so our technique does not guarantee to return
a unique command.

Hence, combining our method with an analysis of the
network traffic of the investigated IoT gateway may be useful.
Indeed, if we are able to detect or bound the number of actions
performed, then it would be possible to remove the commands
Ai with i ∈ [1,m] that do not satisfy this new requirement.
Therefore, by removing these commands, we not only reduce
the set of possible commands but also keep the commands
that best suit the observed situation.

We tested our method on one IoT gateway controlling 12
smart plugs and four smart lamp holders. The smart plugs have
four distinct actions whereas the smart holders have seven so,
for each encrypted payload size captured, we have to infer
the values of seven nb ai with i = 1...7. To measure the
performance of our technique, we performed 307 different
commands Aj = {nb aj1, ..., nb aj7} with j = 1...307 and
our method successfully retrieved the corresponding Aj with
a precision of 98.4%. However, for some encrypted payload
sizes, multiple commands were found. So, we combined our
technique with a network traffic analysis and reduced the
number of commands returned but due to the number of
actions incorrectly detected, the precision decreased to 91.2%.

V. CONCLUSION

In this paper, we introduced a method to automatically
infer actions requested by a user by solely observing the
resulting traffic sent from the web service to the IoT gateway.
Our approach consists in finding a correlation between the
user inputs (actions performed) and the observed encrypted
application data sizes received by the IoT gateways. Thus, to
improve the performance of our method it is interesting to
combine it with a network traffic analysis of the investigated
IoT gateway.

Hence, even though the network traffic is encrypted and the
IoT end-devices not directly observable, the presence of an

IoT gateway does not prevent an intermediate entity to retrieve
fine-grained information about the user activities.

In future work, such an information will be leveraged to
create normal activity profiles and detect deviations afterwards.
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