

Near Sensor Image Denoising with Deep Learning: Review, Perspectives, and Application to Information System Security

Florian LEMARCHAND^{\dagger}, Erwan NOGUES ^{\dagger ‡} and Maxime PELCAT^{\dagger §}

[†] IETR/INSA, Rennes, France

[‡]DGA-MI, Bruz, France

§ Institut Pascal, Clermont-Ferrand, France

Summary:

- Introduction
- Compromising Emanations Detection
- Statistical Image Denoising
- Near Sensor Platforms for Statistical Denoising
- Perspectives for ToxicIA

RESSI – May $16^{th} 2019$

- <u>PhD Title</u>: Recognition of Images and Intercepted Signals using Embedded Artificial Intelligence
- Pôle d'Excellence Cyber (PEC) PhD Grant
- Partnership between DGA-MI and IETR VAADER
- DGA-MI and DGA-IA developed ToxicIA --> Proof Of Concept (POC) on using machine learning to enhance the interpretation of compromising emanations
- POC has ended and is transfered to VAADER team for perspective further enhancement
- This PhD has ToxicIA as a case study

- <u>PhD Title</u>: Recognition of Images and Intercepted Signals using Embedded Artificial Intelligence
- Pôle d'Excellence Cyber (PEC) PhD Grant
- Partnership between DGA-MI and IETR VAADER
- DGA-MI and DGA-IA developed ToxicIA --> Proof Of Concept (POC) on using machine learning to enhance the interpretation of compromising emanations
- POC has ended and is transfered to VAADER team for perspective further enhancement
- This PhD has ToxicIA as a case study

- <u>PhD Title</u>: Recognition of Images and Intercepted Signals using Embedded Artificial Intelligence
- Pôle d'Excellence Cyber (PEC) PhD Grant
- Partnership between DGA-MI and IETR VAADER
- DGA-MI and DGA-IA developed ToxicIA --> Proof Of Concept (POC) on using machine learning to enhance the interpretation of compromising emanations
- POC has ended and is transfered to VAADER team for perspective further enhancement
- This PhD has ToxicIA as a case study

- <u>PhD Title</u>: Recognition of Images and Intercepted Signals using Embedded Artificial Intelligence
- Pôle d'Excellence Cyber (PEC) PhD Grant
- Partnership between DGA-MI and IETR VAADER
- DGA-MI and DGA-IA developed ToxicIA --> Proof Of Concept (POC) on using machine learning to enhance the interpretation of compromising emanations
- POC has ended and is transfered to VAADER team for perspective further enhancement
- This PhD has ToxicIA as a case study

- <u>PhD Title</u>: Recognition of Images and Intercepted Signals using Embedded Artificial Intelligence
- Pôle d'Excellence Cyber (PEC) PhD Grant
- Partnership between DGA-MI and IETR VAADER
- DGA-MI and DGA-IA developed ToxicIA --> Proof Of Concept (POC) on using machine learning to enhance the interpretation of compromising emanations
- POC has ended and is transfered to VAADER team for perspective further enhancement
- This PhD has ToxicIA as a case study

- <u>PhD Title</u>: Recognition of Images and Intercepted Signals using Embedded Artificial Intelligence
- Pôle d'Excellence Cyber (PEC) PhD Grant
- Partnership between DGA-MI and IETR VAADER
- DGA-MI and DGA-IA developed ToxicIA --> Proof Of Concept (POC) on using machine learning to enhance the interpretation of compromising emanations
- POC has ended and is transfered to VAADER team for perspective further enhancement
- This PhD has ToxicIA as a case study

Noisy Sample

Non-Statistical
Low Computation
No need for training dataset
Dedicated to a noise model
Filters (Median, Mean, ...)
Block-Matching 3D (BM3D)

Transform Domain (FFT)

- Statistical Support several noise mod High SNR improvements
- Heavy computations
 Stacked/Sparse Auto-Encoders
 Generative Adversarial Networks
 Fine-tuned Deep Neural Networks

Noisy Sample

Statistical

- + High SNR improvements
- Stacked/Sparse Auto-Encoders Generative Adversarial Networks Fine-tuned Deep Neural Networks

Noisy Sample

Denoising Methods

Denoised Sample

Noisy Sample

Denoising Methods

Denoised Sample

- No need for training dataset
- Dedicated to a noise model
- <u>e.g.</u>: Filters (Median, Mean, ...) Block-Matching 3D (BM3D) Transform Domain (FFT)

Statistical Support several noise models High SNR improvements Heavy computations Stacked/Sparse Auto-Encoders Generative Adversarial Networks Fine-tuned Deep Neural Networks

Denoised Sample

Noisy Sample

Non-Statistical

- Low Computation
- No need for training dataset
- Dedicated to a noise model
- <u>e.g.</u>: Filters (Median, Mean, ...) Block-Matching 3D (BM3D) Transform Domain (FFT)

Statistical

- Support several noise models
- High SNR improvements
- Heavy computations
- <u>e.g.</u> : Stacked/Sparse Auto-Encoders Generative Adversarial Networks Fine-tuned Deep Neural Networks

- Single, Multi, Many-core CPUs : New instructions set made especially for Deep Neural Networks (DNN) → Intel, ARM, Kalray
- **FPGAs** : High parallelism and good energy efficiency \rightarrow Intel (ex-Altera), Xilinx
- **ASICs** : Application specific hardware highly efficient
- **Embedded GPUs** : Low power consumption and good performances \rightarrow Nvidia, Coral, Intel

- Single, Multi, Many-core CPUs : New instructions set made especially for Deep Neural Networks (DNN) → Intel, ARM, Kalray
- **FPGAs** : High parallelism and good energy efficiency \rightarrow Intel (ex-Altera), Xilinx
- **ASICs** : Application specific hardware highly efficient
- **Embedded GPUs** : Low power consumption and good performances \rightarrow Nvidia, Coral, Intel

- Single, Multi, Many-core CPUs : New instructions set made especially for Deep Neural Networks (DNN) → Intel, ARM, Kalray
- **FPGAs** : High parallelism and good energy efficiency \rightarrow Intel (ex-Altera), Xilinx
- **ASICs** : Application specific hardware highly efficient
- **Embedded GPUs** : Low power consumption and good performances \rightarrow Nvidia, Coral, Intel

VAADER Near Sensor Platforms for Statistical Denoising INSA DEFINITION IN THE REAL PROVIDES INTER PROVIDES INTER PROVIDES IN THE REAL PROVIDES IN THE REAL P

- Single, Multi, Many-core CPUs : New instructions set made especially for Deep Neural Networks (DNN) → Intel, ARM, Kalray
- **FPGAs** : High parallelism and good energy efficiency \rightarrow Intel (ex-Altera), Xilinx
- **ASICs** : Application specific hardware highly efficient
- **Embedded GPUs** : Low power consumption and good performances \rightarrow Nvidia, Coral, Intel

Network Reduction

- Connection pruning
- Weight quantization/sharing
- Huffman coding

New Networks

- Smaller networks by design (e.g. : MobileNets)
- Approximate computing, fault tolerance

Training Phase Enhancement

- Better choice of training samples
- Data Augmentation
- Artificial sample generation

Questions & Discussions

Thank you for your attention! For questions --> Poster Session at 18:15 p.m.

<u>Contact</u> :

florian.lemarchand@insa-rennes.fr